咨询热线
137-2866-53461
实验
1.1 实验设计
1.1.1 实验材料、设备
实验材料:本实验所用硅片为市售常规p 型多晶硅片,尺寸为156.75mm×156.75 mm,电阻率为1~3 Ω•cm,厚度为180±30 μm。
实验设备:使用RENA 制绒设备制绒,采用Cent r o therm 管式PECVD 设备及设备自身配置的石墨舟镀膜,采用致东光电D8-4 绒面反射仪测试硅片反射率,采用s entech 激光椭偏仪测试硅片镀膜后的膜厚及折射率,使用GP COl-Q 颜色检验设备测试镀膜后硅片的颜色。
1.1.2 片内、片间均匀性表征方式
镀膜均匀性包括片内均匀性和片间均匀性两方面。
1) 片内均匀性表征方式。镀膜后的硅片用同一激光椭偏仪测试膜厚和折射率,用于测试的5片硅片均取自同一位置,每片硅片均测试5 个固定点,即1 个中心点和4 个角,根据测试数据用标准差来表征片内均匀性。
2) 片间均匀性表征方式。使用GP COl-Q 颜色检验设备测试镀膜后硅片的颜色,根据测试数据用标准差来表征片间均匀性。
1.2 实验内容
1) 本实验的PECVD镀膜工艺采用双层镀膜,工艺参数对氮化硅薄膜的沉积速率有重要影响。为保证数据的准确性,将同批次的硅片均匀分为若干组,在其他工艺条件相同的情况下依次改变以下参数:腔体内、外层气压,内层反应气体的配比,反应气体总气流量,腔体中反应温度,射频功率。
2) 测试不同硅片制绒面反射率对镀膜均匀性的影响。
3) 石墨舟是承载硅片的载体,也是氮化硅薄膜沉积的载体,石墨舟状态是否良好会直接影响氮化硅薄膜沉积的均匀性。实验对比新、旧石墨舟对镀膜均匀性的影响。
2
结果与分析
2.1 工艺参数对镀膜均匀性的影响
2.1.1 腔体内、外层气压
表1 为腔体内层气压固定时,不同的外层气压对镀膜均匀性的影响。
由表1 可知, 当内层气压为固定的1700mTorr、外层气压分别为1500~1800 mTorr 时,外层气压越低,片间均匀性的数值越小,表明其均匀性越好。而片内均匀性的数值越小,表明其均匀性有改善的趋势。
本次实验中发现,外层气压并非越低越好。当外层气压分别为1500~1700 mTorr 时,经管式PECVD 镀膜后,硅片外观正常。但经过高温退火处理后,采用Zeta 3D 显微镜观察发现,外层气压为1500 mTorr 时,硅片表面出现了密集的小白点,为花斑片;外层气压为1600 mTorr 时,偶尔会出现花斑片;外层气压
为1700 mTorr 时,无花斑片。因此,外层气压为1700 mTorr 时最佳。图1 为在不同外层气压下镀膜并高温退火后在Zeta 3D 显微镜下的硅片表面对比图。
硅片表面出现小白点的原因主要是由于随着外层气压降低,等离子体沉积速率降低,膜层结构致密[3]。在膜层结构致密的情况下,高温退火处理时内层的Si-N 和N-H 键被破坏,大量氢原子逸出薄膜表面[4-5],而外层高致密膜阻挡了氢原子溢出,薄膜就容易起泡,产生针孔状小白点[6]。
表2 为腔体外层气压固定时,不同的内层气压对镀膜均匀性的影响。由表2 可知,内层气压越低,硅片片内均匀性略有改善,但片间均匀性变差。
2.1.2 内层反应气体的配比
表3为外层氮硅比(即氨气和硅烷气体的比值)不变时,不同内层氮硅比对镀膜均匀性的影响。
由表3 可知,当外层氮硅比不变时,适当增加内层氮硅比,片内及片间均匀性均得到改善。其原因在于增加内层氮硅比后,等离子气体中的活性硅离子含量下降,导致中间态物质Si(NH2)3下降,从而降低了氮化硅薄膜生产速率[7-8],改善了硅片片内及片间色差。
2.1.3 反应气体总气流量
将同批次实验硅片均匀分为3 组,每组240 片,内层反应气体的氮硅比固定为4.079,外层反应气体的氮硅比固定为10.256;然后改变反应气体总气流量,观察其对镀膜均匀性的影响,具体影响情况如表4 所示。
由表4 可知,内层反应气体总气流量相对较小,增加内层反应气体总气流量可改善腔体内反应气体的气体分布密度,缩小片间差异[9],改善片间均匀性。但是提高腔体内层或外层反应气体总气流量,单位体积内等离子气体中的活性硅离子含量也随之增加[8],薄膜生长速率增加,导致片内均匀性明显变差。
2.1.4 射频功率
射频功率是影响沉积速率的主要因素,射频功率越大,沉积速率越大[6],镀膜均匀性越差。表5 为射频功率对镀膜均匀性的影响,由图可知,射频功率增至8000 W时,片间、片内均匀性均变差。
2.1.5 腔体中反应温度
腔体中反应温度的控制主要表现在调节石墨舟各温区的直接链接变量(direct link varaiation,DLV) 和清理腔体内部碎片这两方面。图2 为石墨舟各温区的示意图。
图3 为同机台、同炉管时,调节DLV 值控制腔体中石墨舟各区温度对硅片片间均匀性的影响。可以看出,调节DLV 后硅片内部厚度标准偏差有所降低,说明改善了硅片片间均匀性。
图4 为调节DLV 值前后石墨舟各温区片间均匀性对比情况。由图4 可知,DLV 调节后石墨舟各温区片间均匀性得到改善。
腔体内碎片过多会影响热电偶测温,使腔体内实际温度和测定温度不一致,导致等离子在石墨舟内硅片上沉积速率存在差异[10],同时还会影响腔体内部进气及气流传输过程的稳定性,导致片间均匀性变差。因此需要对腔体内部碎片进行清理。图5 为同一机台掏炉管清理腔体内部碎片前后硅片片间均匀性的差异。
图6 为掏炉管清理腔体内部碎片前后石墨舟内各温区片间均匀性的差异。由图可知,各温区片间均匀性均有明显改善。